Виды давлений в гидравлике

Содержание

Виды давлений в гидравлике — Портал по безопасности

Виды давлений в гидравлике

 О чем эта статья

Существуют несколько типов давления, различающиеся между собой величиной относительно которой производятся измерения. В статье рассказывается про различные типы давления.

Вы также узнаете какими приборами какие типы давления можно измерять.
Вы также можете посмотреть другие статьи.

Например, «Типы корпусов микросхем» или «Шестипроводный способ подключения мостовой схемы ».

Давление — действующая сила находящаяся на поверхности тела, деленная на площадь данной поверхности. В системе СИ измеряется в Па (Паскалях).

Метрологи измеряют давление в единицах измерения – миллибар, которая равно 100 Па.

Для обозначения типа в нашем каталоге в разделе датчики давления у каждого датчика существует специально поле «Тип измеряемого давления». Разберем какие бывают типы.

Абсолютное давление

Абсолютное давление — величина измеренная относительно давления равного абсолютному нулю.

Другими словами давление относительно абсолютного вакуума.

Если вам нужен прибор этого типа или просто интересно как он выглядит, то тут можно посмотреть датчик этого типа.

Барометрическое давление

Барометрическое давление — это абсолютное давление земной атмосферы.

Свое название этот тип давления получил от измерительного прибора барометра, который как известно определяет атмосферное давление в определенный момент времени при определенно температуре и на определенной высоте над уровнем моря. Относительно этого давления определяются избыточное давление и вакуум.

Давление избыточное

Избыточное давление имеет место в том случае если имеется положительная разность между измеряемым давлением и барометрическим.

То есть избыточное давление это величина на которую измеряемое давлением больше барометрического. Для измерения этого вида давления используют манометр.

В качестве примера датчика этого типа можете посмотреть прибор метран-150.

Вакуум

Вакуум или по другому вакуумметрическое давление это величина на которую измеряемое давление меньше барометрического.

Если избыточное давление обозначается в положительных единицах, то вакуум в отрицательных.

Например, датчик 40PC015V1A, способный измерять вакуум, имеет диапазон измеряемого давления от -103 до 0 кПа. Приборы способные измерять этот тип давления называют вакуумметрами.

Дифференциальное давление

Дифференциальное давление имеет место если сравнивается одно давление относительно другого, причем ни одно из них не равно барометрическому. Избыточное давление и вакуум меряется относительно барометрического давления.

Если же измерить эти величины относительно любой другой величины, то мы получим уже дифференциальное.

Мы могли бы привести пример и датчика дифференциального давления, но лучше дадим вам ссылку на поиск с помощью которого можно найти датчик любого типа из описанных в этой статье типа.

Рекомендуем к прочтению статью типы датчиков давления, в которой речь пойдет об устройстве этих приборов.

Использование приборов измерения давления

Измерение давления происходить повсеместно практически в каждой области деятельности человека, начиная от домашнего хозяйства и заканчивая добычей нефти и газа. Каждый автолюбитель знаком с датчиков давления масла, у многих на дачах установлены баллоны с датчиком дифференциального давления.

В промышленности датчики давления очень распространены для измерения давления в газо и нефтепроводов, особенно часто для этих целей применяются приборы фирмы Метран. Датчики давления воды комунальщики устаналивают на водопровод.

Если вам понравилась статья нажмите на одну из кнопок ниже

Источник: http://www.DeviceSearch.ru.com/article/tipy_davleniya

Виды гидравлики: общие классификации

Гидравлические системы используются в разнообразном оборудовании, но работа каждой из них основана на схожем принципе.

В его основе лежит классический закон Паскаля, открытый еще в XVII веке. Согласно ему, давление, которое приложено к объему жидкости, создает силу.

Она равномерно передается во всех направлениях и создает одинаковое давление в каждой точке.

Основа работы гидравлики любого вида — использование энергии жидкостей и возможность, приложив малое усилие, выдерживать увеличенную нагрузку на значительной площади – так называемый гидравлический мультипликатор. Таким образом, к гидравлике можно отнести все виды устройств, работающих на основе использования гидравлической энергии.

Спецтехника с гидроузламиГидрофицированные роботы на заводе «Камаз»

Виды гидравлики по сферам применения

Несмотря на общий «фундамент», гидросистемы поражают разнообразием.

Начиная от базовых гидравлических конструкций, состоящих из нескольких цилиндров и трубок, и заканчивая футуристичными продуктами, в которых объединены гидроэлементы и электротехнические решения, они демонстрируют широту инженерной мысли и приносят прикладную пользу в самых разных отраслях:

  • промышленности — как элемент литейного, прессового, транспортировочного и погрузочно-разгрузочного оборудования, металлорежущих станков, конвейеров;
  • сельском хозяйстве — навесное оборудование тракторов, экскаваторов, комбайнов и бульдозеров управляется именно гидроузлами;
  • автомобильном производстве: гидравлическая тормозная система — «must have» для современного легкового и грузового автотранспорта;
  • авиакосмической отрасли: системы, независимые или объединенные с пневматикой, используются в шасси, управляющих устройствах;
  • строительстве: практически вся спецтехника оснащена гидрофицированными узлами;
  • судовой технике: гидравлические системы используются в турбинах, рулевом управлении;
  • нефте- и газодобыче, морском бурении, энергетике, лесозаготовительном и складском хозяйстве, ЖКХ и многих других сферах.

Гидростанция к токарному станку

В промышленности (для металлорежущих и других станков) современную производительную гидравлику используют благодаря ее способности обеспечить оптимальный режим работы с помощью бесступенчатого регулирования, получать плавные и точные движения оборудования и простоты его автоматизации.

Источник: https://sivcomsks.com/vidy-davleniy-v-gidravlike/

Виды давлений в гидравлике

Гидравлические системы используются в разнообразном оборудовании, но работа каждой из них основана на схожем принципе.

В его основе лежит классический закон Паскаля, открытый еще в XVII веке. Согласно ему, давление, которое приложено к объему жидкости, создает силу.

Она равномерно передается во всех направлениях и создает одинаковое давление в каждой точке.

Основа работы гидравлики любого вида — использование энергии жидкостей и возможность, приложив малое усилие, выдерживать увеличенную нагрузку на значительной площади – так называемый гидравлический мультипликатор. Таким образом, к гидравлике можно отнести все виды устройств, работающих на основе использования гидравлической энергии.

Спецтехника с гидроузламиГидрофицированные роботы на заводе «Камаз»

Виды гидравлики с разными гидроприводами

В оборудовании для разных сфер используются гидроприводы одного из двух типов — гидродинамические, работающие преимущественно на кинетической энергии, или объемные.

Последние используют потенциальную энергию давления жидкостей, обеспечивают большое давление и, благодаря техническому совершенству, широко используются в современных машинах.

Системы с компактными и производительными объемными приводами устанавливают на сверхмощных экскаваторах и станках — их рабочее давление достигает 300 МПа и больше.

Пример техники с объемным гидроприводомРабочее колесо гидротурбины для гидроагрегата ГЭС

Объемные гидроприводы используют в большинстве современных гидростистем, устанавливаемых в прессах, экскаваторах и строительной спецтехнике, металлообрабатывающих станках и так далее. Устройства классифицируют по:

  • характеру движения выходных звеньев гидромотора — оно может быть вращательным (с ведомым валом или корпусом), поступательным или поворотным, с движением на угол до 270 градусов;
  • регулированию: регулируемые и нерегулируемые в ручном или автоматическом режиме, дроссельным, объемным или объемно-дроссельным способом;
  • схемам циркуляции рабочих жидкостей — компактной замкнутой, используемой в мобильной технике, и разомкнутой, которая сообщается с отдельным гидробаком;
  • источникам подачи жидкостей: с насосами или гидроприводами, магистральными или автономными;
  • типу двигателя — электрический, ДВС в автомобилях и спецтехнике, турбины корабля и так далее.

Турбина Siemens с гидроприводом

Конструкция гидравлики разных видов

В промышленности используют машины и механизмы со сложным устройством, но, как правило, гидравлика в них работает по общей принципиальной схеме. В систему включены:

  • рабочий гидроцилиндр, преобразовывающий гидравлическую энергию в механическое движение (или, в более мощных промышленных системах, гидродвигатель);
  • гидронасос;
  • бак для рабочей жидкости, в котором предусмотрена горловина, сапун и вентилятор;
  • клапаны — обратный, предохранительный и распределительный (направляющий жидкость к цилиндру или в резервуар);
  • фильтры тонкой очистки (по одному на подающей и обратной линии) и грубой очистки — для удаления примесей механического характера;
  • система, управляющая всеми элементами;
  • контур (емкости под давлением, трубопроводная обвязка и другие компоненты), уплотнители и прокладки.

Классическая схема раздельноагрегатной гидросистемы

В зависимости от вида гидросистемы, ее конструкция может отличаться — это влияет на сферу применения устройства, его рабочие параметры.

Стандартный рабочий гидроцилиндр тормоза для комбайна «Нива СК-5»

Виды конструктивных элементов гидросистемы

Прежде всего, важен тип привода — части гидравлики, преобразующей энергию.

Читайте также  Наружное кровотечение виды симптомы первая помощь

Цилиндры относятся к роторному типу, и могут направлять жидкости только в один конец или в оба (однократное или двойное действие соответственно). Усилие их направлено прямолинейно.

Гидравлика открытого типа с цилиндрами, которые сообщают выходным звеньям возвратно-поступательное движение, используется в мало- и среднемощном оборудовании.

Спецтехника с гидродвигателем

В сложных промышленных системах вместо рабочих цилиндров устанавливают гидродвигатели, в которые из насоса поступает жидкость, а затем возвращается в магистраль.

Гидрофицированные моторы сообщают выходным звеньям вращательное движение с неограниченным углом поворота. Их приводит в действие рабочая гидравлическая жидкость, поступающая от насоса, что, в свою очередь, заставляет вращаться механические элементы.

В оборудовании для разных сфер устанавливают шестеренчатые, лопастные или поршневые гидромоторы.

Радиально-поршневой гидромотор

Потоками в системе управляют гидрораспределители — дросселирующие и направляющие. По особенностям конструкции их делят на три разновидности: золотниковые, крановые и клапанные.

Наиболее востребованы в промышленности, инженерных системах и коммуникациях гидрораспределители первого типа. Золотниковые модели просты в эксплуатации, компактны и надежны.

Гидронасос — еще один принципиально важный элемент гидравлики.

Оборудование, преобразующее механическую энергию в энергию давления, используют в закрытых и открытых гидросистемах.

Для техники, работающей в «жестких» условиях (бурильной, горнодобывающей и так далее) устанавливают модели динамического типа — они менее чувствительны к загрязнениям и примесям.

Гидравлический насос Гидронасос в разрезе

Также насосы классифицируют по действию — принудительному или непринудительному. В большинстве современных гидросистем, использующих повышенное давление, устанавливают насосы первого типа. По конструкции выделяют модели:

  • шестеренчатые;
  • лопастные;
  • поршневые — аксиального и радиального типов.
  • и др.

Гидрофицированные манипуляторы для 3D-печати

Существует огромное количество видов использования законов гидравлики — изготовители придумывают новые модели техники и оборудлвания.

Среди наиболее интересных — гидросистемы, устанавливаемые в манипуляторах для 3D-печати, коллаборативных роботах, медицинских микрофлюидных устройствах, авиационном и другом оборудовании.

Поэтому любая классификация не может считаться полной — научный прогресс дополняет ее чуть ли не каждый день.

pi4 workerbot — ультрасовременный индустриальный робот, воспроизводящий мимику

Гидравлический манипулятор, распечатанный на 3D-принтере

Источник: http://hydro-test.ru/statyi/vidy-gidravliki-klassifikacii/

Гидравлические клапаны

Гидравлический клапан (гидроклапан) – специальное устройство, главной функцией которого является регулировка параметров потока жидкости посредством изменения проходного сечения гидроаппарата. Такое изменение осуществляется при помощи изменения положения запорно-регулирующего элемента системы.

Сегодня существует множество классификаций гидравлических клапанов по самым различным параметрам. Наиболее общими классификациями устройств являются.

  1. Регулирующие (дросселирующие) гидроклапаны – регулируют движение потока жидкости.
  2. Направляющие – их главной задачей является пропускать или останавливать поток жидкости при достижении потоком заданных параметров (давления, разности давлений и пр.).

Помощь в подборе оборудования: +7 (495) 211 03 84

ОСТАВИТЬ ЗАЯВКУ

Получить консультацию:

Ваше сообщение было успешно отправлено!

Наши специалисты скоро свяжутся с Вами!

Какие клапаны относятся к каждому типу

Регулирующие Направляющие
1. Предохранительный клапан – поддерживает давление до конкретного уровня, не превышая этого показателя. Находится в работе непостоянно, то есть при нормальном стабильном давлении поток рабочей жидкости через него не проходит. Срабатывает в условиях превышенного давления в гидросистеме (это может случиться, например, при превышении допустимой нагрузки на цилиндр, при остановке на упоре и пр.).2. Переливной клапан – главная его функция – поддержание давления на входе в клапан на заднем уровне. Такой клапан постоянно находится в работе, то есть через него постоянно протекают излишки рабочей жидкости.3. Редукционный клапан – он поддерживает давление на постоянном показателе на выходе из клапана.4. Клапан разности давлений – этот клапан поддерживает постоянную разность между давлениями на входе и выходе из клапана.5. Клапан соотношения давлений – он поддерживает постоянное соотношение между давлениями на входе и выходе из клапана. 1. Обратный клапан – пропускает поток жидкости только в одном направлении. Срабатывает при любом, даже минимальном повышении давления на выходе, по сравнению с давлением на выходе из клапана. К такому типу клапанов относятся гидрозамки.2. Клапан последовательности – когда давление на входе в клапан или в отдельном постороннем потоке достигает определенного уровня, этот клапан начинает пропускать поток жидкости.3. Клапан выдержки времени – пропускает или останавливает поток жидкости через определенный промежуток времени.

Источник: https://alekstroy.com/vidy-davleniy-v-gidravlike/

Принципы гидравлики

Назначение давления и потока.

При изучении основ гидравлики были использованы следующие термины: сила, передача энергии, работа и мощность.

Эти термины используются при описании взаимоотношения давления и потока. Давление и поток — два основных параметра каждой гидравлической системы.

Давление и поток взаимосвязаны, но выполняют разную работу.

Давление сжимает или прикладывает усилие. Поток двигает предметы

Водяной пистолет является хорошим примером давления и потока в применении. Нажатие на спусковой крючок создаёт давление внутри водяного пистолета. Вода под давлением вылетает из водяного пистолета и таким образом сбивает деревянного солдатика.

Что такое давление?

Давайте подумаем, как и почему создаётся давление. Текучая среда (газ и жидкость) стремится к расширению или происходит сопротивление при их сжатии. Это и есть давление.

Когда вы накачиваете шину, вы создаёте в шине давление. Вы закачиваете в шину воздух больше и больше. Когда шина полностью наполнена воздухом, происходит нажатие на стенки шины. Такое нажатие является видом давления. Воздух является видом газа и может быть сжат.

Сжатый воздух давит на стенки шины с одинаковой силой в каждой точке. Жидкость находится под давлением. Основное отличие состоит в том, что газы могут сжиматься в большей степени, чем жидкости.

Одинаковая сила в каждой точке

Давление в сжатой жидкости

Если вы нажмёте на сжатую жидкость, возникнет давление. Так же как и в случае с шиной, давление одинаково в каждой точке бочки, содержащей жидкость.

Если давление слишком велико, бочка может сломаться.

Бочка сломается в слабом месте, а не там, где больше давление, потому что давление одинаково в каждой точке.

Жидкость почти не сжимается

Сжатая жидкость удобна при передаче силы по трубам, на изгибе, вверх, вниз, потому что жидкости почти несжимаемы и передача энергии происходит немедленно. Многие гидравлические системы используют масло. Это потому, что масло почти не сжимается. В тоже время, масло может использовать в качестве смазки.

Закон Паскаля: Давление, производимое внешними силами на поверхность жидкости или газа, передаётся по всем направлениям без изменения.

Отношение давление и силы

По закону Паскаля, отношение между давлением и силой выражается формулами: P = F/A

F = P х S, где P — давление, F — сила, S — площадь

Гидравлический рычаг

На модели поршня, показанной на рисунке ниже, можно увидеть пример уравновешивания различного веса через гидравлический рычаг.

Паскаль открыл, как видно на этом примере, что малый вес малого поршня уравновешивает большой вес большого поршня, доказывая, что площадь поршня пропорционально весу. Это открытие применительно к сжимаемой жидкости.

Причина, почему это возможно, это то, что жидкость всегда действует с равной силой на равную площадь.

На рисунке изображён груз 2 кг и груз 100 кг. Площадь одного груза, весом 2 кг — 1 см2, давление составляет 2 кг/см2. Площадь другогогруза, весом 100 кг — 50 см2, давление составляет 2 кг/см2. Два веса уравновешивают друг друга.

Механический рычаг

Та же ситуация может быть проиллюстрирована на примере механического рычага на рисунке ниже.

Кот весом 1 кг сидит на расстоянии 5 метров от центра тяжести рычага и уравновешивает кота весом 5 кг на расстоянии 1 метра от центра тяжести, подобно грузу на примере гидравлического рычага.

Преобразование энергии гидравлического рычага

Важно помнить, что жидкость действует равной силой на равную площадь. При работе это очень сильно помогает.

Имеется два цилиндра одинакового размера. Когда мы нажимаем на один поршень с усилием 10 кг, другой поршень выдавливается с усилием 10 кг, потому что площадь каждого цилиндра одинаковая. Если площади разные, силы тоже разные.

Например, допустим, что большой поршень имеет площадь 50 см2, а маленький поршень имеет площадь 1 см2, при усилии в 10 кг на маленький поршень происходит воздействие 10 кг/см2 на каждую часть большого клапана согласно закона Паскаля, поэтому большой поршень получает общую силу 500 кг. Мы используем давление для передачи энергии и выполнения работы.

Имеется важный пункт при преобразовании энергии, а именно, отношение между силой и расстоянием.

Вспомни, на механическом рычаге, малый вес требует длинный рычаг для достижения равновесия.

Для того, чтобы поднять кота весом 5 кг на 10 см, кот весом 1 кг должен опустить рычаг на 50 см вниз.

Давайте посмотрим на рисунок гидравлического рычага снова и подумаем о ходе малого поршня. Ход малого поршня 50 см необходим для передачи достаточного количества жидкости для передвижения поршня большого цилиндра на 1 см.

Поток создаёт движение

Читайте также  Виды пожарно технического инструктажа

Что такое поток?

При разнице давления в двух точках гидравлической системы, жидкость стремится к точке с наименьшим давлением. Такое движение жидкости называется потоком.

Здесь приведены несколько примеров потока. Вода в городском водопроводе создаёт давление.

Когда мы поворачиваем кран, то за счёт разности давления из крана течёт вода.

В гидравлической системе поток создаёт насос. Насос создаёт непрерывный поток

Скорость и величина потока

Скорость и величина потока используются для измерения потока.

Скорость показывает расстояние, пройденное за определённый промежуток времени.

Величина потока показывает, сколько жидкости протекает через определённую точку за данный момент времени.

Величина потока и скорость

В гидравлическом цилиндре легко рассмотреть отношение между величиной потока и скоростью.

Во первых, мы должны подумать об объёме цилиндра, который мы должны заполнить и затем подумать о ходе поршня.

На рисунке показан цилиндр А длинной 2 метра и объёмом 10 литров и цилиндр В длинной 1 метр и объёмом 10 литров.

Если закачать 10 литров жидкости в минуту в каждый цилиндр, полный ход обоих поршней длится 1 минуту. Поршень цилиндра А двигается в два раза быстрее, чем цилиндра В.

Это происходит потому, что поршень должен пройти расстояние в два раза больше за один и тот же промежуток времени.

Это значит, что цилиндр с меньшим диаметром двигается быстрее, чем цилиндр с большим диаметром при одинаковой скорости потока для обоих цилиндров.

Если мы увеличим скорость потока до 20 л/мин, обе камеры цилиндра наполнятся в два раза быстрее. Скорость поршня должна увеличиться в два раза.

Таким образом, мы имеем два пути увеличения скорости цилиндра. Один путём уменьшения размера цилиндра и другой за счёт увеличения скорости потока. Скорость цилиндра, таким образом, пропорциональна скорости потока и обратно пропорционально площади поршня.

Давление и сила

Создание давления

Если вы надавите на пробку в бочке, заполненную жидкостью, пробка будет остановлена жидкостью. При нажатии, жидкость под давлением давит на стенки бочки. При чрезмерном нажатии возможен разрыв бочки.

Путь наименьшего сопротивления

Если имеется бочка с водой и отверстием. При нажатии на крышку сверху, вода вытекает из отверстия. Вода, проходя через отверстие, не встречает сопротивления.

Когда сила прикладывается к сжатой жидкости, жидкость ищет путь наименьшего сопротивления.

Неисправности оборудования, использующие давление масла.

Вышеописанные характеристики гидравлических жидкостей являются полезными для гидравлического оборудования, но также являются источником многих неисправностей.

Например, если произошла течь в системе, гидравлическая жидкость будет вытекать, так как ищет путь наименьшего сопротивления. Типичными примерами является течь ослабленных соединений и уплотнений. 

Естественное давление

Мы разговаривали про давление и поток, но часто давление существует без потока. Сила тяжести является хорошим примером.

Если мы имеем три взаимосвязанных резервуара разного уровня, как показано на рисунке, сила тяжести сохраняет жидкости во всех резервуарах на одном уровне.

Это другой принцип, который мы можем использовать в гидравлической системе.

Значение силы тяжести

Под действием силы тяжести масло попадает из бака к насосу. Масло не всасывается насосом, как думают многие люди. Насос служит для подачи масла. Что обычно понимают под всасыванием насоса, обозначает подачу масла к насосу под действием силы тяжести.

Масло к насосу поступает под действием силы тяжести.

Масса жидкости

Масса жидкости также создаёт давление. Дайвер, который ныряет в море, скажет, что он не может нырять слишком глубоко.

Если дайвер опустится слишком глубоко, давление раздавит его. Это давление создаётся массой воды.

Таким образом, мы имеем вид давления, которое появляется самостоятельно от веса воды.

Давление возрастает пропорционально глубине и мы можем точно измерить давление на глубине. На рисунке изображена квадратная колонна с водой высотой 10 метров.

Известно, что один кубический метр воды весит 1000 кг. При увеличении высоты колонны до 10 метров, вес колонны увеличится до 10000 кг. На дне образуется один квадратный метр.

Таким образом вес распределяется на 10000 квадратных сантиметров.

Если мы разделим 10000 кг на 10000 квадратных сантиметров, то получится, что давление на этой глубине составляет 1 кг на 1 квадратный сантиметр.

Что вызывает давление?

Когда давление смешивается с потоком, мы имеем гидравлическую силу. Откуда поступает давление в гидравлическую систему. Часть — это результат силы тяжести, но откуда берётся остальное давление.

Нагрузка создает давление. Большая часть давления появляется от воздействия нагрузки. На рисунке ниже, насос подаёт масло непрерывно.

Масло из насоса находит путь наименьшего сопротивления и направляется через шланг к рабочему цилиндру.

Вес нагрузки создаёт давление, величина которого зависит от веса.

Давление в параллельном соединении

Имеется три различных груза, соединённых параллельно в одной гидравлической системе, как показано на рисунке ниже. Масло, как обычно, ищет путь наименьшего сопротивления.

Это значит, что самый лёгкий груз поднимется первым, потому что цилиндру В понадобится наименьшее давление. Когда самый лёгкий груз поднимется, давление возрастёт, чтобы поднять следующий по весу груз из оставшихся.

Когда цилиндр А достигнет окончания хода, давление возрастёт, чтобы поднять самый тяжёлый груз. Цилиндр С поднимется последним.

Гидравлическая сила рабочего цилиндра

(1) Закон инертности говорит о том, что свойство тела сохранять своё состояние покоя или прямолинейного равномерного движения, пока какая-либо внешняя сила не выведет его из этого состояния. Это одна причина, почему поршень рабочего цилиндра не двигается.

(2) Другая причина, почему поршень не двигается это нахождение на нём груза.

(3) Когда насос начинает давить на цилиндр, рабочий поршень и груз оказывают сопротивление потоку масла. Таким образом, давление возрастает. Когда это давление преодолевает сопротивление поршня, поршень начинает движение.

(4) Когда поршень двигается вверх, он поднимает груз. Давление и поток используются вместе для выполнения работы. Это гидравлическая сила в действии.

Поток

Ранее мы говорили, что поток совершает работу и двигает предметы. Имеется другой ключевой момент — Каким образом скорость потока относится к работе гидравлической системы?

Ответом является то, что скорость потока постоянная.

Возрастающая скорость потока создаёт высокую скорость

Многие люди думают, что возрастающее давление повышает скорость, но это не правда. Вы не можете заставить двигаться поршень быстрее, повысив давление. Если вы хотите заставить двигаться поршень быстрее, вы должны повысить скорость потока.

При закрытие предохранительного клапана, скорость не возрастает

Здесь приведена одна распространённая ошибка при поиске неисправности в гидравлической системе.

Когда скорость цилиндра падает, некоторые механики сразу направляются к предохранительному клапану, потому что они думают, что повышение давления увеличит рабочую скорость.

Они стараются уменьшить настройки предохранительного клапана, что предполагается повысит максимальное давление в системе. Такие изменения не приводят к увеличению скорости действия.

Предохранительный клапан служит для защиты гидравлической системы от чрезмерного давления. Параметры давления никогда не должны быть выше величины установленного давления. Вместо повышения установок давления, механики должны искать другие причины неисправности системы.

Источник: https://hydrac.ru/index.php/printsipy-gidravliki

Основные типы гидросистем

Преимущества гидравлических систем по сравнению с другими методами передачи мощности являются:

  • Простота конструкции. В большинстве случаев, несколько компонентов гидросистем в связке могут заменить более сложные механические связи.
  • Гибкость. Гидравлические компоненты могут быть расположены со значительной гибкостью. Трубы и шланги вместо механических элементов практически полностью устраняют проблемы в выборе местоположения.
  • Плавность. Гидравлические системы обладают плавностью и тишиной в работе. Вибрации сведены к минимуму.
  • Управление. Контроль в широком диапазоне скоростей и сил достаточно просто реализовать.
  • Стоимость. Высокая производительность с минимальными потерями на трение обеспечивает стоимость передачи мощности на минимальном уровне.
  • Защита от перегрузки. Автоматические клапаны предохраняют систему от поломки от перегрузки.

   Основным недостатком гидравлической системы является сохранение прецизионных деталей в нормальном состоянии, когда они подвергаются воздействию плохих климатических условий и загрязнений.

 Защита от ржавчины, коррозии, грязи, масла, износа и других неблагоприятных условий окружающей среды является очень важным условием. Ниже рассмотрим несколько основных типов гидравлических систем.

Гидравлический домкрат 

    Эта система (рисунок 1) состоит из резервуара с жидкостью, системы клапанов и штоков, представляет собой гидрорычаг Паскаля. Перемещение маленького штока (насоса) вниз приводит к подёму вверх большого штока(подъёмный цилиндр) с нагрузкой.

Так как давление под маленьким и большим штоками одинаковое, а площади штоков (на которые это давление воздействует) разные, то в соответствии с законом Паскаля, при небольшом усилии на шток насоса, достигается значительно большее усилие на подъемном цилиндре.

   На рисунке 1 в верхней части показан такт впуска. Выпускной обратный клапан закрывается под давлением при нагрузке, и всасывающий обратный клапан открывается таким образом, что жидкость из резервуара заполняет насосную камеру.

 В нижней схеме рисунка 1 плунжер насоса перемещается вниз. Впускной обратный клапан закрывается под давлением и открывает выпускной клапан. Масса жидкости закачивается под большим поршнем, чтобы поднять его.

 Чтобы опустить нагрузку, в системе предусмотрен третий клапан (игольчатый клапан). При его открытии, объем жидкости под большим поршнем сообщяется с резервуаром.

Читайте также  Вид повязки при венозном кровотечении

Нагрузка опускает большой подъемный шток вниз и выдавливает жидкость обратно в резервуар.

вверху — такт впуска и удержания нагрузки, внизу — такт выпуска и подъема нагрузки.

 Рисунок 1 — Гидравлический домкрат

Реверсивный гидромотор

   На рисунках 2 и 3 показан гидравлический насос с механическим приводом и гидравлический реверсивный роторный мотор.

Клапан направления потока (реверсивный клапан) направляет поток жидкости или к одной или к другой стороне гидромотора и обратно в резервуар.

Так достигается возможность работы гидравлического мотора с разным направлением вращения (реверсивность) Предохранительный клапан защищает систему от избыточного давления и может создать обход выхода потока жидкости из насоса обратно в резервуар, если давление поднимается слишком высоко.

 Рисунок 2 — Реверсивный гидромотор

 Рисунок 3 — Реверсивный гидромотор (продолжение)

Система с открытым центром

    В этой системе, распределительный клапан управления, должен быть открыт в центре, чтобы поток масла, проходил через клапан и возвращался в резервуар. Рисунок 4 показывает эту систему в нейтральном положении.

 Для того, чтобы одновременно работать с несколькими гидравлическими функциями, система с открытым центром должна иметь правильные соединения, которые обсуждаются ниже.

Система с открытым центром эффективна для выполнения отдельных гидравлический функций и имеет ограничения с выполнением множества функций.

Рисунок 4 — Гидравлическая система с открытым центром.

    (1) Последовательное соединение. На рисунке 5 изображена система с открытым центром при последовательном соединении гидравлических потребителей/распределителей.

Поток масла от насоса направляется к трём распределительным клапанам последовательно. Центр каждого распределителя в нейтральном положении открыт, что бы поток масла свободно перемещался от насоса к резервуару.

Направление движение потока масла указано стрелками. Поток из выхода первого клапана направляется на вход второго, и так далее.

Когда распределительный клапан работает, входящее масло поступает в цилиндр, который управляется соответственным клапаном-распределителем. Возвращаемая жидкость из цилиндра направляется через возвратный трубопровод и к следующему клапану.

 Рисунок 5 — Гидравлическая система с открытым центром и последовательным соединением.

    Эта система эффективна только если работает одновременно один клапан-распределитель. Когда это происходит, полный поток масла и давления на выходе из насоса доступны для этой функции.

 Однако, если более чем один клапан-распределитель работает, общее количество давления и потока, необходимое для каждой функции не может превышать параметр сброса системы (установки клапана сброса).

   2) Последовательно-параллельное соединение. Рисунок 6 показывает изменение по сравнению с последовательным соединении.

 Масло из насоса направляется через распределительные клапаны последовательно, а также параллельно. Клапаны иногда «нагромождают», чтобы обеспечить дополнительные проход потока.

 В нейтральном положении, жидкость проходит через клапаны последовательно, как стрелки указывают.

 Тем не менее, когда какой — либо клапан-распределитель срабатывает, выпуск на работающем клапане закрывается, но поток масла становится доступен для всех других клапанов через параллельное соединение.

Рисунок 6 — Гидравлическая система с открытым центром и последовательно-параллельным соединением.

    Когда два или более клапанов работают одновременно, цилиндр, который нуждается в наименьшем давлении будет работать первым, а затем цилиндр со следующим меньшим давлением и так далее. Эта способность работать с двумя или более клапанами одновременно является преимуществом по сравнению с последовательным соединением.

    (3) Делитель потока. Рисунок 7 показывает систему с открытым центром и делителем потока. Делитель потока получает объем масла из насоса и делит его между двумя функциями.

 Например, делитель потока может быть установлен, чтобы открыть левую сторону первой в этом случае, если оба управляющих клапана были одновременно приведены в действие.

 Или  он может разделить поток масла на обе стороны, в равной степени или в разном процентном отношении.

Для такой системы с делителем потока, насос должен быть достаточно производительным, чтобы управлять всеми функциями одновременно.

 Он также должен  питать жидкостью при максимальном давлении самую главную из гидравлических функций. А это означает, что большое количество лошадиных растрачиваются при работе только одного управляющего клапана.

Рисунок 7 — Гидравлическая система с открытым центром и делителем потока.

Система с закрытым центром

    В этой системе, насос может бездействовать (находиться в режиме ожидания), когда масло не требуется для работы функции. Это означает, что управляющий клапан (распределитель) закрыт в центре, останавливая поток масла из насоса.

 Рисунок 8 показывает схематично гидравлическую систему с закрытым центром во время работы гидравлической функции.

 Для того, чтобы работали одновременно несколько функций, гидравлическая система с закрытым центром имеет следующие соединения:

Рисунок 8 — Гидравлическая система с закрытым центром.

    (1) Насос с постоянной подачей и аккумулятором.На рисунке 9 показана гидравлическая система с закрытым центром и аккумулятором.

 В этой системе имеется  небольшой насос, но в постоянном объеме заряжает аккумулятор. Когда аккумулятор заряжается до полного давления, разгрузочный клапан отклоняет поток насоса обратно в резервуар.

 Обратный клапан удерживает масло под давлением в контуре.

Рисунок 9 — Гидравлическая система с закрытым центром и аккумулятором.

   Когда управляющий клапан работает, аккумулятор разряжает свою масло под давлением и приводит в движение цилиндр.

 Поскольку давление начинает падать, разгрузочный клапан открывается и направляет поток насоса в аккумулятор для подзарядки потока.

 Эта система, используя небольшого объёма насос, эффективна в случаях когда масло требуется только в течение короткого промежутка времени.

 Тем не менее, когда для работы гидравлической функции нужно много масла в течение более длительных периодов, система с аккумулятором может не справиться с этим , если аккумулятор не очень велик.

    (2)Насос с изменяемым расходом. Рисунок 10 показывает гидравлическую систему с закрытым центром и насосом переменного расхода при нейтральном положении управляющего клапана.

 Когда управляющий клапан в нейтральном положении (центр закрыт), масло закачивается, пока давление не поднимается до заданного уровня.

 Клапан регулирования давления позволяет насосу отключить самого себя и поддерживать это давление в клапане.

Насос находится в режиме ожидания(stand by) Расход масла насосом близок к нулю (восполняются собственные утечки в насосе), давление равно установкам клапана давления ожидания насоса. 

    Когда распределительный клапан срабатывает (перемещается вверх), масло отводится от насоса к нижней части полости цилиндра.

 Падение давления, вызванное сообщением линии давления насоса и нижней полости цилиндра, приводит насос из режима ожидания в рабочий режим, чтобы создать поток масла и давление на дно поршня, для подъема груза.

Рисунок 10 — Гидравлическая система с закрытым центром и насосом переменного расхода.

    В это время, верхняя полость цилиндра соединяется с возвратной линией, что позволяет маслу выталкиваться из поршня, чтобы возвращаться в резервуар или в насос.

 Когда управляющий клапан возвращается в нейтральное положение, то масло становится запертым по обе стороны цилиндра, а поступление давления от насоса к гидроцилиндру наглухо перекрыто.

 После этой последовательности, насос снова переходит в режим ожидания. Перемещение золотника в нижнее положение направляет масло к верхней части полости поршня и приводит к перемещению груза вниз.

 Масло из нижней части поршня направляется в обратную линию в резервуар.

   Рисунок 11 показывает ту же систему с закрытым центром, но с подкачивающим насосом (насос зарядки), который перекачивает масло из резервуара в насос переменного расхода.

Во время работы насоса подпитки создаётся необходимое давление для основного насоса и необходимое количество масла для него. Всё это делает работу насоса переменного расхода более эффективным.

 Возврат масла из работающих гидравлических функций всей гидросистемы, направляется непосредственно к входному отверстию насоса с переменным расходом.

Рисунок 11 — Гидравлическая система с закрытым центром и подкачивающим насосом.

    Поскольку современным машинам нужно больше гидравлической мощности, гидравлическая система с закрытым центром является более выгодной.

 Например, на тракторе, масло может потребоваться для усилителя руля, усилителя тормозов, рабочих цилиндров, трех-точечной навески, погрузчика и другого навесного оборудования.

 В большинстве случаев, каждая функция требует различное количество масла.

В системах с закрытым центром, количество масла для каждой функции можно задавать с помощью линии или размера клапана или путем дросселирования с меньшим количеством внутренней генерации тепла по сравнению с применением делителей потоков в сопоставимой системе с открытым центром. Другими преимуществами системы с закрытым центром является:

  • Не требует разгрузочных клапанов, так как насос просто выключается сам по себе при достижении давления в режиме ожидания. Это предотвращает накопление тепла в, по сравнению в системах  где часто  достигается давления сброса.
  • Имеет линии, клапаны и цилиндры , которые могут быть адаптированы к требованиям потока каждой функции.
  • Запас потока масла для полной работы и скорости гидравлической системы, доступен при низких оборотах двигателя в минуту (об/мин). Больше функций могут быть задействованы одновременно.
  • Большая эффективность работы в некоторых случаях. Например, гидравлические функции, такие как тормоза, которые требуют силы, но очень малого движения поршня.

     Удерживая клапан открытым, в режиме ожидания давление постоянно воздействует на тормозной поршень без потери эффективности , так как насос возвращается в режим ожидания.

Источник: Priciples of Hydraulics — Basic Systems

Источник: http://catterbet.com/stati/106-osnovy-gidrosistem

Понравилась статья? Поделить с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: