Принцип действия электроизмерительных приборов различных систем

Содержание

Классификация электроизмерительных приборов по принципу действия и другим параметрам

Принцип действия электроизмерительных приборов различных систем

Электроизмерительные приборы востребованы и представлены в большом разнообразии.

Они применяются в промышленности, транспортной сфере и других областях деятельности.

Устройства имеют особую систему обозначения и имеют классификацию по ряду признаков, которую необходимо знать перед применением приборов.

Конструкция и области применения измерительных приборов

Для измерения различных показателей электрического тока используют специальные приборы.

Такие устройства разнообразны и классифицируются по нескольким критериям, что позволяет выбрать оптимальный вариант.

Все варианты образуют отдельный класс, называющийся электроизмерительные приборы.

Электроизмерительные приборы многообразны, так как необходимы в разных сферах деятельности

Многие варианты приборов обязательно предполагают наличие дисплея, на котором отображается информация.

Также в конструкции присутствуют переключатель или кнопка управления прибором.

Разъёмы для подключения кабелей, корпус, кнопка включения/отключения тоже являются элементами электроизмерительных приборов.

Дисплей или циферблат всегда присутствуют на приборах измерения электротока

Устройства разного типа применяют в следующих сферах деятельности:

  • медицина;
  • связь и энергетика;
  • научные исследования;
  • бытовые условия;
  • транспортная промышленность;
  • производство любого типа.

Простые или сложные модели приборов позволяют измерить силу тока и другие показатели электроэнергии.

Для бытовых условий применяют простой вариант — счётчик электроэнергии, а в промышленности используются более сложные и профессиональные устройства.

Таким образом, для электроизмерительных приспособлений каждого типа характерно определённое назначение.

Принцип работы

Большинство электроизмерительных устройств имеют принцип действия, основанный на том, что электроны двигаются по проводнику электроцепи и создают вокруг себя магнитное поле. Стрелка измерительного приспособления перемещается в этом поле, реагируя на его параметры. Чем ниже показатели магнитной зоны, тем меньше отклонения стрелки.

Шкала и стрелка присутствуют на многих приборах и визуализируют особенности электрического тока

При этом все приборы электроизмерительного типа по принципу действия разделяются на следующие виды:

  • магнитоэлектрические, в которых ток пропускается через особую рамку в виде нескольких витков изолированной проволоки. Она размещена между полюсами постоянного магнита, поля их взаимодейству­ют. Рамка и сидящая на одной с ней оси стрелка перемещаются на определённый угол, который пропорционален напряжению или току. Эти приспособления предоставляют точные данные, но без дополнительных устройств используются для определения небольших значений и лишь тока постоянного типа;
  • в электродинамических устройствах магнитное поле, в котором вращается рамка, получается не благодаря постоянному магниту, а с помощью катушки с током. У этих приборов имеются две катушки: неподвижная и подвижная (рамка, жёстко соединённая со стрелкой). Устройства оптимальны для измерения постоянного и непостоянного вариантов тока;
  • работа тепловых моделей осуществляется в результате нагревания током и удлинения проводников. Приборы используются как для постоянного, так и для тока переменного типа;
  • действие электростатических устройств основано на взаимной силе притяжения пластин. Это осуществляется в результате воздействия на них напряжения.

Варианты классификации приборов измерения тока

Все устройства, служащие для определения параметров электрического тока, классифицируются по нескольким признакам. В зависимости от сферы и цели применения подбирают нужный вариант.

Дисплей может быть цифровым или в виде стрелки и шкалы

Виды конструкций

Классификация устройств по типу конструкции предполагает разделение приборов по внешним данным, форме, корпусу, типу дисплея или шкалы.

В результате можно выделить несколько вариантов.

Одним из них являются щитовые модели, которые представляют собой объёмный щит с кнопками управления и информационным табло.

Цифровые приборы имеют дисплей, отображающий максимально точный результат измерений

Стационарные не подлежат частому перемещению и устанавливаются для контроля параметров энергии в определённой зоне.

В отличие от них более мобильны переносные варианты, которые позволяют провести работы в разных местах без необходимости перемещения массивного оборудования.

Классификация по роду измеряемой величины

Все электроизмерительные устройства классифицируются в зависимости от того, какую величину позволяют определить.

Это необходимо для всестороннего изучения показателей напряжения, что важно в разных сферах деятельности.

В результате классификации по роду определяемой величины можно выделить следующие виды оборудования:

  • амперметры необходимы для измерения тока;
  • омметры служат для определения сопротивлений;
  • ваттметры позволяют узнать мощность;
  • счётчики используют для учёта энергии;
  • частотомеры нужны для определения частот тока переменного типа;
  • угол сдвига фаз измеряют фазометры;
  • узнать малые величины помогают гальванометры;
  • осциллографы определяют часто меняющиеся показатели.

Осциллограф имеет сложную конструкцию, помогающую получить точный результат

Каждый прибор имеет определённое назначение, но многие из них имеют схожий принцип работы. Оборудование может быть разного размера, а производители представляют широкий выбор вариантов.

Разделение по роду тока

Электрический ток может быть нескольких видов и в зависимости от этого подбирают приборы для его измерения.

В результате такого подхода можно выделить изделия, предназначенные для измерения и используемые лишь в цепях постоянного тока.

Существуют варианты, которые применяют только в цепях с переменным электричеством. Более универсальны модели, подходящие для работы с обеими цепями.

Читайте также  Акт проверки системы дымоудаления образец

Способы отображения информации

Существует два варианта: цифровые и аналоговые.

Под цифровыми устройствами подразумевают приборы, осуществляющие в процессе измерения автоматическое преобразование определяемой величины в дискретную.

При этом величина является непрерывной, а полученный результат отображается на цифровом дисплее или регистрируется цифропечатающим оборудованием.

Цифровой дисплей характеризуется чёткостью отображения

Главное преимущество цифровых моделей по сравнению с иными вариантами заключается в том, что полученный результат измерений может быть преобразован математически или физически без повышения погрешности. Одним из представителей такого вида приборов является цифровой вольтметр. Востребованы также амперметры, фазометры, частотомеры.

Аналоговые варианты часто оснащены шкалой и стрелкой.

Оборудование характеризуется тем, что при измерении показатель входного сигнала преобразуется в показатель выходного импульса.

Результат показывает стрелка, направленная на градуированную шкалу, имеющую определённый предел.

Шкала со стрелкой имеет определённый диапазон измерений

Три блока являются составляющими аналоговой конструкции: блок сравнения, первичный преобразователь, устройство ввода информации. Элементы соединены в систему и взаимосвязаны друг с другом.

Иные варианты систематизации

Электроизмерительные устройства широко используются и классифицируют не только по вышеперечисленным критериям, но и по другим особенностям. Часто разделение осуществляется по следующим параметрам:

  • назначение, то есть оборудование может быть вспомогательным, для измерений, бытового или профессионального применения;
  • система выдачи итогового результата, в зависимости от чего изделия могут быть регистрирующими или с выводом информации на экран;
  • способ измерения. Оборудование может быть использовано для сравнения или оценки показателей.

Обозначения приборов

Производители при маркировке изделий указывают определённые обозначения, которые отражают информацию о принципе действия оборудования. Прописная буква в маркировке указывает на тип работы устройства. Основными являются следующие варианты:

  • «М» или «К» означают, что прибор модернизированный или контактный;
  • «Д» — электродинамическое устройство;
  • «Н» означает, что конструкция самопишущая;
  • «Р» указывает на преобразователи измерительного типа;
  • индукционные устройства обозначаются буквой «И»;
  • «Л» — это логометры.

Разнообразные приборы имеют множество вариантов классификации

При выборе конкретного устройства учитывают обозначения в маркировке. Перед первым использованием нового оборудования требуется его настройка, выполняющаяся согласно инструкции.

Класс точности электроизмерительных устройств

Помимо иных характеристик, важное значение имеет и класс точности, который отражает особенности прибора.

Точность зависит от допустимой предельной погрешности, которая может возникнуть в результате конструктивных особенностей конкретного оборудования.

Выделяют по ГОСТу такие классы точности, как: 4,0 и 0,05; 0,1 и 0,2, а также 0,5 и 1,0, 1,5 и 2,5.

Класс не превышает относительной погрешности устройства, определяющейся по формуле: — ɣ = ∆x / xпр * 100%. При этом ɣ — приведённая погрешность, ∆x — абсолютная погрешность, а xпр является измеряемым параметром.

: классификация электроизмерительного оборудования

Оборудование для измерения разных показателей электротока представлено множеством моделей и типов. Выбор правильного устройства является залогом точных измерений и эффективной работы приборов.

Источник: https://elektro.guru/osnovy-elektrotehniki/klassifikatsiya-elektroizmeritelnyih-priborov.html

Электроизмерительные приборы

Перечислять электроизмерительные приборы можно довольно долго, однако им дается и одно обобщающее определение. Это класс устройств, которые, так или иначе, измеряют различные электрические величины.

Стоит заметить, что в эту группу входят не только те инструменты, которые направлены непосредственно на измерение величин, но и такие, которые могут выполнять и дополнительные функции, наряду с измерением.

А также те, чьей основной задачей не является само измерение, но она выполняется в комплексе со всей работой прибора.

Рассматриваемые приборы имеют широчайший спектр применения. Сюда входит и медицина, и научные исследования, и промышленность, и транспорт, и энергетика, и связь, и многие другие сферы.

Используем мы и представителей электроизмерителей в быту, чтобы вести учет потребляемой нами электроэнергии.

А с тех пор, как изобрели специальные датчики, которые преображают любой вид энергии в электрическую, применение таких приборов возросло до вселенских масштабов.

Классификация приборов

Классификация электрических приборов достаточно объемна, но можно выделить некоторые устройства:

  • амперметры;
  • омметры;
  • вольтметры;
  • мультиметры (это комбинированные приборы, могут содержать в себе несколько преображений энергии);
  • ваттметры;
  • частотометры;
  • счетчики.

Эти приборы разделяются по виду показываемой или воспроизводимой величины. И такая классификация наиболее существенна. Однако разделяют устройства и с помощью других признаков:

  • по способу информирования человека, который с ними работает;
  • по способу приборного применения;
  • по способу измерения, например, один инструмент только показывает ту или иную величину, а второй – сравнивает ее с другой;
  • по действию, или его принципу;
  • по конструкции, могут быть изготовлены в качестве щитов, а могут быть стационарными и переносными.

Однако наиболее понятно будет рассмотреть какой-либо определенный прибор конкретно.

Малогабаритные трансформаторы

На примере нагрузочных трансформаторов Н-12 можно рассмотреть электроприборы. Нагрузочные трансформаторы Н-12 имеют свои особенности.

Нагрузочные трансформаторы Н-12 нашли свое назначение в испытаниях распределителей тока на автоматических выключателях, а также на релейных защитах.

При этом сила первичного тока не должна превышать 12 кА, в то время, когда их проверяют или налаживают. Это устройство имеет самую оптимальную конструкцию.

В ней удалось совместить минимизацию сетевой нагрузки и удобство, которое заключается в легкости и компактности.

Нагрузочные трансформаторы Н-12 могут работать, как в комплектации с другими устройствами, но только из серии «Сатурн», так и в режиме автономности.

При работе в комплекте, рассматриваемое устройство обеспечивает заданную длительность работы и регулировку тока самого трансформатора. В качестве еще одного плюса можно отметить работоспособность прибора с последовательным и параллельным напряжением. Когда нагрузочный трансформатор Н-12 работает в комплекте, он обеспечивает:

  • даже при больших токах малую сетевую нагрузку;
  • безопасность для рабочего, которая получается вследствие разделения цепей – первичной и вторичной;
  • исключение износа или же подгорания всех контактов, с которыми соприкасается или работает;
  • широчайший диапазон силы тока, она может доходить до нескольких тысяч;
  • маленькие габариты и удобства в транспортировки к нужному месту.
Читайте также  Вакуумная система пожарного и аварийно спасательного автомобиля

В комплекте с устройством идут токопровода длиною в 0,7 миллиметров и сечением в 240 квадратных миллиметров.

Проверка автоматических выключателей и устройства для этого

Устройства для проверки автоматических выключателей предназначаются для контроля работоспособности выключателей автоматического режима, в профилактических целях.

Такую проверку надо проводить своевременно и периодически, в противном случае, ее отсутствие может повлечь за собой неприятные и негативные последствия.

Такие устройства работают только с цепями переменного тока.

Особенностью устройств для проверки автоматических выключателей является то, что прогрузка этих выключателей происходит на переменном токе с синусоидальным характером. Этот факт гарантирует пользователям достоверность контроля.

Рассматриваемая аппаратура работает в двух режимах: длительный и кратковременный. В обоих этих режимах, заданное токовое значение устанавливается вручную.

Работник устройства последовательно увеличивает ток от его начального показателя до того, который необходим или задан.

Среди плюсов устройства для проверки автоматических выключателей можно выделить то, что доступна погрузка каждого полюса в отдельности при работе с любым автоматическим выключателем.

Источник: https://enciklopediya-tehniki.ru/promyshlennost-na-e-ya/elektroizmeritelnye-pribory.html

Приборы магнитоэлектрической системы

ID: 2687

Название работы: Электроизмерительные приборы

Категория: Лабораторная работа

Предметная область: Энергетика

Описание: Цель работы: Изучить физические принципы действия и основные характеристики электроизмерительных приборов. На основе электромеханического стрелочного прибора М-93 собрать и исследовать миллиамперметр постоянного тока и вольтметры для измерения…

Язык: Русский

Дата добавления: 2013-01-06

Размер файла: 217 KB

Работу скачали: 298 чел.

Цель работы: 1. Изучить физические принципы действия и основные характеристики электроизмерительных приборов.

2. На основе электромеханического стрелочного прибора М-93 собрать и исследовать миллиамперметр постоянного тока и вольтметры для измерения постоянного и переменного напряжений на заданные пределы измерения.

Введение

Измерительным прибором называется средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного наблюдения.

Приборы делятся на аналоговые (стрелочные) и цифровые. В аналоговом измерительном приборе показания являются непрерывной функцией изменений измеряемой величины.

различают электромеханические и электронные аналоговые приборы.

Цифровой измерительный прибор автоматически вырабатывает дискретные сигналы измерительной информации в цифровой форме.

При изучении электрических и магнитных явлений наиболее часто приходится измерять значения таких физических величин, как сила тока и напряжение. Приборы, предназначенные для этих измерений, называются соответственно амперметрами и вольтметрами.

Основные характеристики электроизмерительных приборов.

Электроизмерительные приборы характеризуются целым рядом свойств и величин.

Назначение прибора позволяет определить, какие величины могут быть измерены с помощью данного прибора. Приборы, позволяющие выполнять измерения различных физических величин, называются универсальными.

Система прибора указывает, какие физические принципы положены в основу работы данного прибора.

Предел измерений xпр – это есть значение измеряемой величины, при котором указатель отсчетного устройства перемещается до конца шкалы.

Электроизмерительные приборы, как правило, имеют несколько пределов измерений, которые указываются на корпусе или на шкале прибора.

в таком случае приборы называются многопредельными.

Важнейшей характеристикой электроизмерительного прибора является чувствительность S – отношение изменения сигнала на выходе измерительного прибора d к вызывающему его изменению измеряемой величины dx:

Величина, обратная чувствительности С=1/S, называется ценой деления и определяется как число единиц измеряемой величины, приходящейся на одно деление шкалы.

Иногда удобно характеризовать прибор порогом чувствительности, под которым понимают изменение измеряемой величины, вызывающее наименьшее изменение показания прибора, различимое без дополнительных устройств.

Одним из важнейших вопросов измерения является оценка абсолютной погрешности измерений, выполненных с помощью электроизмерительных приборов.

Характеристикой, позволяющей осуществить такую оценку, является обобщенная характеристика точности прибора – класс точности.

Классом точности  называется безразмерная величина, численно равная наибольшей допустимой приведенной (относительной) основной погрешности измерительного прибора, выраженной в процентах, т.е.

где ∆x – максимальная абсолютная основная погрешность электроизмерительного прибора, допускаемая на используемом пределе измерений, при обеспечении требуемых условий измерения; xN – нормирующее значение величины.

Для приборов с равномерной шкалой, у которых нулевая отметка находится на краю шкалы, нормирующее значение принимается равным предельному, т.е. xN = xпр.

На электромеханические амперметры и вольтметры ГОСТ устанавливает следующее классы точности: 0.05; 0.1: 0.2; 0.5; 1.0; 1.5; 2.0; 2.5; 4; 5. Класс точности обычно указывается на шкале прибора или в его паспорте.

Для характеристики приборов используется еще целый ряд величин – вариация, входное сопротивление, выходное сопротивление, потребляемая мощность, стабильность, надежность, быстродействие и т.д.

Аналоговые электромеханические электроизмерительные приборы.

В электромеханических измерительных приборах измеряемая электрическая величина x непосредственно преобразуется в показание отсчетного устройства. Прибор состоит из измерительного механизма и отсчетного устройства.

Отсчетное устройство предназначено для наблюдения значений измеряемой величины. Включает в себя шкалу и указатель, расположенные на лицевой стороне прибора.

Измерительный механизм является основным элементом прибора и служит для преобразования электрической энергии в механическую энергию перемещения подвижной части прибора, чаще всего углового (вращения).

Таким образом измеряемая электрическая величина преобразуется в силу, создающую вращающий момент МВР.

Чтобы каждому значению измеряемой величины соответствовал определенный угол поворота подвижной части измерительного механизма, необходимо вращающий момент уравновесить противодействующим моментом, зависящим от угла поворота  — Мпр.

В этом случае Мпр=W, где W – удельный противодействующий момент, зависящий только от упругих свойств используемых пружин или растяжек. Зависимость между углом поворота подвижной части измерительного механизма  и измеряемой физической величиной x-=f(x) называется основным уравнением электроизмерительного прибора или уравнением шкалы прибора.

В зависимости от способа создания вращающего момента различают системы приборов: магнитоэлектрическую, электромагнитную, электродинамическую, электростатическую.

Принцип действия приборов с измерительным механизмом магнитоэлектрической системы основан на взаимодействии магнитного поля постоянного магнита и подвижной катушки, по которой происходит измеряемый электрический ток (рис 1).

Катушка 1 в форме прямоугольной рамки помещена в кольцевом зазоре между полюсными наконечниками 2 постоянного магнита 3 и цилиндрическим сердечником 4. В зазоре создается однородное радиально направленное магнитное поле. Рамка крепится на двух полуосях 5.

Читайте также  Система подпора воздуха при пожаре

Здесь же крепится стрелочный указатель 6, перемещающийся при повороте рамки над шкалой 7. Две спиральные пружины 8 создают противодействующий момент и одновременно используются для подвода измеряемого тока.

В высокоточных измерительных механизмах рамка крепится на растяжках.

 MBP=BISn, (вращающий)

где В – индукция магнитного поля в зазоре; S – площадь рамки; n – число витков катушки; I – сила тока, протекающего по катушке.

 MПР=W, (противодействующий)

где  — угол поворота подвижной катушки; W – удельный противодействующий момент.

Установившееся отклонение определяется равенством двух моментов. Следовательно –

где  – чувствительность прибора по току.

При включении следует соблюдать полярность, так как при изменении направления тока в катушке изменяется, и направление вращения подвижной части.

где r – сопротивление катушки; U – напряжение на катушке; — – чувствительность по напряжению.

Таким образом, магнитоэлектрические приборы могут применяться в качестве амперметров (А), вольтметров (V) и гальванометров (G).

Гальванометр – высокочувствительный прибор, предназначен для измерения малых токов и напряжений, а также количества электричества.

Гальванометры часто используются в качестве нулевых индикаторов, показывающих отсутствие тока в цепи.

Достоинства: в высокой чувствительности (до 3.10-11 А) высокая точность (до класса 0.05), малом потреблении мощности от измеряемой цепи (~10-9 Вт).

Недостатки: чувствительность к перегрузкам, сложность изготовления и ремонта и относительно высокая стоимость.

Принцип действия приборов электромагнитной системы основан на взаимодействии магнитного поля неподвижной катушки, по которой протекает измеряемый ток, и подвижного железного сердечника, эксцентрично расположенного на оси и соединенного с указательной стрелкой, который, поворачиваясь, втягивается в катушку (рис 2)

В приборах такого типа =kI2. Шкала прибора не линейна. Зато прибор может использоваться для измерения как постоянного, так и переменного тока.

Достоинства: простота конструкции, низкая стоимость, высокая надежность.

Электродинамические приборы

Принцип действия приборов электродинамической системы заключается во взаимодействии магнитных полей подвижной и неподвижной катушек, по которым протекает измеряемый ток.

Подвижная катушка 1 (рис 3) может поворачиваться относительно неподвижной 2, состоящей из 2 частей, разделенных воздушным зазором.

Под действием вращающего момента стрелка 4, укрепленная на оси 5, перемещается относительно шкалы 3.

Шкала прибора такого типа нелинейная. Прибор пригоден для измерений в цепях постоянного и переменного тока.

Электростатические приборы

Принцип действия электростатических приборов основан на взаимодействии двух или нескольких заряженных проводников, один из которых является подвижным, и угол отклонения указателя приборов такого типа равен =kU2.

Наибольшее распространение получили 2 вида механизмов: с измеряющейся рабочей площадью пластин (рис 4а) и с изменяющимся расстоянием между пластинами (рис 4б).

Шкала приборов такого типа нелинейная.

Выпрямительные приборы

Пригодны только для измерений в цепях постоянного тока.

В схеме однополупериодного выпрямителя (рис 5а) через измерительный механизм проходит только положительная полуволна, что определяется включением диода в соответствующей полярности.

В двухполупериодной схеме выпрямителя (рис 5б) ток проходит через измерительный механизм в обе половины периода.

Величины U и Uср.в связаны соотношением: U1.11Uср.в

Шкала выпрямительных приборов нелинейна.

Аналоговые электронные электроизмерительные приборы

На рисунках 6 и 7 приведены упрощенные структурные схемы электронных вольтметров постоянного и переменного напряжений.

В электронном вольтметре постоянного напряжения измеряемое напряжение подается на делитель напряжения (ДН), позволяющий установить требуемый предел измерений, а затем усиливается электронный усилителем постоянного тока (УПТ) до величины, достаточной для работы измерительного механизма магнитоэлектрического индикатора (МЭИ).

В случае вольтметра переменного напряжения измеряемое переменное напряжение после делителя (ДН) усиливается электронным усилителем (У) и затем преобразуется в постоянное с помощью выпрямительного устройства (ВУ), которое поступает на магнитоэлектрический измерительный механизм индикатора (МЭИ).

Цифровые электронные электроизмерительные приборы

Такие приборы имеют ряд преимуществ перед аналоговыми: удобство отсчитывания значений измеряемой величины, возможность полной автоматизации процесса измерений, регистрация результатов измерения с помощью цифропечатающих устройств и перфораторов, возможность вводить измерительную информацию в цифровую ЭВМ.

Существует несколько методов построения цифровых приборов. Остановимся на одном из них – времяимпульсном, основанном на преобразовании измеряемой величины во временной интервал. Структурная схема приведена на рис 8.

измерение осуществляется циклами, длительность которых устанавливается управляющим устройством УУ. В начале каждого цикла с помощью УУ происходит сброс на нуль показания цифрового индикатора.

Одновременно со сбросом запускается генератор ГЛН, формирующий линейно изменяющееся напряжение UA, которое поступает на устройства сравнения УС1 и УС2. УС1 выдает импульс, который скрывает временной селектор ВС.

, пропускающий на вход электронного счетчика Эсч короткие импульсы с периодом TK. Счетные импульсы формируются в специальном генераторе ГсчИ и имеют постоянную частоту следования, а следовательно и период.

За время – на вход счетчика проходит число импульсов N, связанное с Ux соотношением:

Цифровые вольтметры позволяют измерять также постоянные токи и сопротивления, так как эти величины могут быть легко преобразованы в соответствующее измеряемой величине напряжение. Также цифровые вольтметры называются универсальными.

Измерение силы тока и напряжения

При непосредственной оценке для измерения силы тока используются амперметры, для измерения напряжения – вольтметры.

В зависимости от вида тока (напряжения), его величины, частоты, формы, требуемой точности измерения, сопротивления цепи, в которой производится измерение, используются различные типы приборов.

Включение электроизмерительных приборов в электрическую цепь

При измерении силы тока на участке цепи сопротивлением R амперметр включается последовательно с R в разрыв цепи (рис 9а). Тогда сила тока, текущего через измерительный прибор и участок с сопротивлением R, будет одинаковой.

Вольтметр подсоединяется параллельно участку цепи с сопротивлением R, напряжение на котором измеряется (рис 9б). При параллельном подключении напряжение на измерительном приборе и участке цепи R одинаково.

Последовательное подключение: R'=R+RA>R

Параллельное подключение: R''=RRB/(R+RB)

Источник: http://5fan.ru/wievjob.php?id=2687

Понравилась статья? Поделить с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: