Послойное уплотнение грунта СНИП

Содержание

Технология уплотнения грунта

Послойное уплотнение грунта СНИП

Процедура повышения плотности осуществляется путём приложения механических усилий для перераспределения частиц материала. Подобное действие осуществляется при возведении земляных дамб, насыпей, прокладывании железных и автомобильных дорог, улиц и магистралей, а также при закладке фундаментов зданий и целом ряде других строительных мероприятий. Технология уплотнения грунта во всех этих случаях соответствует установленным нормам.

Процесс уплотнения грунта

Повышение плотности грунтового слоя на 1% обеспечивает увеличение несущей способности укладываемого поверх него асфальто- и цементо-бетона на 10-15%. Неправильное и недостаточное проведение подобных работ, напротив, приводит к осадкам и иным разрушительным последствиям.

Степень уплотнения грунта в каждом конкретном случае зависит от ряда факторов:

  • типа обрабатываемого материала;
  • уровня его влажности;
  • применяемого способа воздействия;
  • объёма прикладываемой энергии.

После проведения процедуры поверхность в меньшей степени подвержена сжиманию и различным деформациям.

Способы уплотнения грунтов

Придание материалу необходимой плотности осуществляется методом укатки, трамбовки и вибрирования. Оптимальным является сочетание сразу нескольких подходов, либо соединение одного из способов с рабочим действием (например, передвижение действующего устройства).

Способы уплотнения грунтов также определяются применением разных типов оборудования:

Используется собственная масса механизмов. Регуляция степени воздействия происходит через корректировку веса или размера функционирующей площади устройств. Действие статических машин направлено преимущественно на поверхностное уплотнение грунтов, а на глубине их влияние ощущается мало.

Механизм действует за счёт вращательных движений эксцентрикового груза. Устройства данной группы обеспечивают сочетание нагрузок динамического и статического типа (вибрация и волны сжатия).

Степень уплотнения грунта на глубине гораздо значительнее, чем в случае статического воздействия. Машины данного типа подходят для оказания воздействия на крупноблочные и глинистые породы, песок, гравий и асфальтобетон.

Вибрационные механизмы в общем числе занимают больше 2/3 всего рынка подобного оборудования.

«Обеспечить необходимую степень уплотнения грунта не выйдет, если подстилающая прослойка отличается зыбкостью и податливостью.»

Виды катков для уплотнения грунта

Катки отличаются тем, что их рабочий орган представляет собой перекатывающийся по рабочей поверхности валец. Существует несколько разновидностей таких механизмов.

Вид каткаКраткое описание
Прицепной вибрационный Может весить от 3 до 15 тонн. Подходит для большей части работ.
Статический трёхвальцовый Вес – от 8 до 15 тонн. Два вальца работают на приводе, один занимает ведомое положение (в новейших моделях ведущими являются все три элемента). Устройство оснащено жёсткой рамой. Оказываемое усилие корректируется водной пригрузкой.
Самоходный вибрационный с одним катком Приводные пневматические колёса, один вибрационный валец. Некоторые модели оснащены элементами-кулачками («пэдфут»), что обеспечивает значительную эффективность при работе с глинистыми породами и глубинное уплотнение грунтов. По массе может достигать от 3 до 17 тонн.
Ручной двухвальцовый Облегчённый механизм без особых свойств, но достаточно распространённый. Весит от 4 до 10 центнеров.
На пневматических шинах. Количество шин может колебаться от 7до 11, они выстроены таким образом, чтобы перекрывать следы друг друга. Возможно введение песочного или водного пригруза. Исходный вес от 10 до 35 тонн.
Вибрационный тандемный Вибрацией и приводом оснащены оба вальца. Применяется для воздействия на подстилающие слои и покрытия из асфальтобетона (2-15 тонн, но есть и лёгкая разновидность, весом до 2-х тонн).
Статический с трамбующим воздействием Есть кулачковые вальцы (4 штуки), имеет сравнительно высокую скорость передвижения (при весе 15-30 тонн), особенно часто используется на дорожных одеждах связного типа.

Виды плит для уплотнения грунта

Плиты отличаются наличием плоского рабочего органа, который может оказывать вибрационное воздействие и передвигаться по поверхности обрабатываемой площади. Обычно их используют, чтобы обеспечить послойное уплотнение грунтов (СНиП 3.02.01-87) из несвязных крупно- и мелкозернистых материалов.

Самоходные плиты для уплотнения грунта

Тяжесть плиты рассматривается как её основной параметр. По массе такие элементы бывают:

  • лёгкими (до 5 центнеров);
  • средними (5-15 центнеров);
  • тяжёлыми (боле 15 центнеров).

Также их различают по принципу работы:

  • одномассные (колебания исходят от всей плиты, вес до 1 центнера);
  • двухмассные (активно действует только нижняя часть рабочего элемента, а верхняя повышает общий уровень давления и является местом размещения двигателя, что в целом снижает инерционные потери);
  • виброударные (рабочим органом является вибромолот, опирающийся на раму посредством пружин).

Большая часть вибрационных плит на данный момент относится к числу самоходных.

Технология уплотнения грунта, используя выше перечисленные машины

Чтобы степень уплотнения грунта соответствовала необходимым параметрам, его предварительно разравнивают бульдозерами и аналогичным оборудованием. Также чрезмерно сухой грунтовый материал увлажняют, а слишком влажный – осушают.

Плита для уплотнения грунта

Воздействие осуществляется в пределах отдельного участка («захватки»). Его размер определяется фронтом работ, которые должны быть выполнены, пока сохраняется оптимальная влажность грунта. При повышении плотности в области фундаментных пазух и траншей показано применение вибрационных плит, пневмо- и электротрамбовки (толщина укладываемых слоёв 0,15-0,25 м). Самоходные виброплиты используются при уплотнении засыпки под пол.

Если требуется уплотнить крупную насыпь (то есть речь идёт о больших площадях), то лучше воспользоваться прицепными, кулачковыми или гладкими самоходными катками. Уместны будут различные способы уплотнения грунтов c помощью круговых трамбовочных механизмов.

Технология уплотнения грунта щебнем

Один из вариантов подготовки участка к строительным работам — уплотнение грунта щебнем. Технология проведения данной процедуры обладает своей спецификой. Щебневая подушка позволяет увеличить несущую способность зданий, уменьшая нагрузку, предназначенную для фундамента.

Технология уплотнения грунта щебнем

Конкретная сфера применения материала зависит от его фракции:

  • мелкая – садовые дорожки, незначительные (декоративные) элементы;
  • средняя (2-4 см) – создание подушки под фундаментом и железобетонными конструкциями;
  • крупная (4-7 см) – обустройство дорожного полотна, отсыпка площадок при условии текучести материала.

Уплотнение грунта щебнем производится с использованием тяжёлых катков, а также вибрационной трамбовки и плит, значительно ускоряющих процесс в целом.

При возведении небольших зданий для подушки используется щебень мелких фракций, а её толщина составляет 10-50 см. В качестве отсыпки поочерёдно используется щебень и песок крупных или средних фракций. Формирование берёт на себя роль выравнивающего элемента, поэтому щебень необходимо утрамбовывать как можно тщательнее. На песочных подушках рекомендуется использовать ручные трамбовки для уплотнения грунта.

Ленточный монолитный фундамент поддерживается слоем среднефракционного щебня. Правильно выполненная подушка, кроме своей основной функции, способна обеспечить теплоизоляцию и дренаж, что продлевает эксплуатационный срок здания. При обустройстве трубопроводов используется обратная засыпка грунта с послойным уплотнением.

Проведения испытания после уплотненного грунта

Уплотнение грунтов и контроль степени уплотнения производится в соответствии со всеми нормами СНиП и ГОСТа. Отслеживание осуществляется как в процессе работ, так и после и завершения.

Степень уплотнения грунта фиксируется через сопоставление плотности образцов взятых на участке с оптимальными показателями плотности, демонстрируемыми материалом данного типа при стандартной обработке. Плотность исследуемого образца определяют коэффициентом уплотнения «К». Испытания грунтов после уплотнения осуществляет генеральный подрядчик и технадзор заказчика.

Читайте также  СНИП кладка стен из кирпича

Сноска из СНИП про уплотнение грунтов

СНиП 3.02.01-87 «Земляные сооружения, основания и фундаменты»

  1. «Опытное уплотнение следует выполнять в соответствии с рекомендуемым приложением 4 по программе, учитывающей гидрогеологические условия площадки, предусмотренные проектом средства уплотнения, сезон производства работ и другие факторы, влияющие на технологию и результаты работ».
  2. «После уплотнения грунта на опытном участке надлежит определить плотность и влажность уплотненного грунта на двух горизонтах, соответствующих верхней и нижней части уплотненного слоя по ГОСТ 22733-77» (Приложение 4).

В июле 2003-го года ГОСТ 22733-77 был заменён на ГОСТ 22733-2002.

Протокол уплотнения грунта (образец)

Протокол испытания уплотнения грунта

Акт на уплотнения грунта:

Акт на уплотнение грунта

Техника безопасности

Основными источниками сведений по технике безопасности, при проведении работ по повышению плотности грунтов, являются следующие документы:

  • СНиП III-4-80 «Техника безопасности в строительстве»;
  • СНиП 3.02.01-87 «Земляные сооружения, основания и фундаменты»;
  • ВСН 52-96 «Инструкция по производству земляных работ в дорожном строительстве и при устройстве подземных инженерных сетей».

Заключение

Технология уплотнения грунта связана с большим количеством тонкостей: применение подходящего оборудования для воздействия на определённые материалы, учёт влажности, контроль качества, составление документации и так далее.

В ходе работ необходимо ориентироваться на ЕНиР, уплотнение грунта щебнем и результаты иных операций должны соответствовать всем установленным там нормам и расценкам.

Марина

Май 28, 2017

статьи:

Источник: https://ospetstehniki.ru/articles/tehnologiya-uplotneniya-grunta.html

Коэффициент уплотнения грунта, песка, щебня

Определяем коэффициент уплотнения грунта, песка и щебня, а также плотность грунтов при устройстве дорожной одежды, обратной засыпке траншей, котлованов, благоустройстве территорий. Работаем по всей территории России.

Ниже приведена сравнительная таблица по стоимости и срокам выполнения работ:

Метод Сроки и место проведения Стоимость
Экспресс методы определения степени уплотнения песка, грунта. 1 рабочий день. Измерения проводятся на объекте. Заключения с результатами измерений оформляются сотрудником на объекте. 935 руб. за 1 точку. Минимальный заказ — 10 точек измерений.
Стандартное уплотнение (ГОСТ 22733-2016 Метод лабораторного определения максимальной плотности). 3-4 рабочих дня. На объекте определяется плотность методом режущего кольца и отбирается проба для анализа в лабораторных условиях. 2750 руб. за 1 пробу. Минимальный заказ — 5 измерений.
Метод режущего кольца (в случае, если необходимо определить именно плотность). ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик 1-2 рабочих дня. На объекте отбирается проба методом режущего кольца, и рассчитывается плотность грунта. 2200 руб. за 1 пробу. Минимальный заказ — 5 точек измерений.
Определение плотности щебеночного основания* (ГОСТ 28514-90 определение плотности грунтов методом замещения объема). 1-2 рабочих дня. На объекте отбирается проба щебня и рассчитывается его плотность. 2750 руб. за 1 точку. Минимальный заказ — 5 точек измерений.
Выезд сотрудника лаборатории на объект Заказчика г.Москва (не далее 100 км от МКАД) 3300 руб.
г.Екатеринбург (не далее 100 км от ЕКАД) 2200 руб.
Выезд в другие регионы по согласованию

* Если в проекте указана требуемая плотность после уплотнения, тогда возможно посчитать степень уплотнения щебеночного основания (коэффициент уплотнения).

Закажите выезд специалиста по телефону 8(800)707-65-49

или по электронной почте info@scopum.ru

Контроль степени уплотнения нормируется:- СП 45.13330.2012;- Руководство по сооружению земляного полотна автомобильных дорог;- ТР 73-98 Технические рекомендации по технологии уплотнения грунта при обратной засыпке котлованов, траншей, пазух;

— СП 121.13330.2012 Аэродромы. Актуализированная редакция СНиП 32-03-96.

Требуемое значение коэффициента уплотнения песка или грунта регламентируется действующими нормативными документами в зависимости от объекта или отдельно указывается в проекте. Если этих данных нет, можно воспользоваться таблицей М.2 СП 45.13330.2012:

Тип грунта Контрольные значения коэффициента уплотнения при нагрузке на поверхность уплотненного грунта, МПа, при общей толщине отсыпки, м
0,05-0,2 Св. 0,2
до 2 2,01-4 4,01-6 св. 6 до 2 2,01-4 4,01-6 св. 6 до 2 2,01-4 4,01-6 св. 6
Глинистые 0,92 0,93 0,94 0,95 0,94 0,95 0,96 0,97 0,95 0,96 0,97 0,98
Песчаные 0,91 0,92 0,93 0,94 0,93 0,94 0,95 0,96 0,94 0,95 0,96 0,97
Примечание — Коэффициентом уплотнения называется отношение достигнутой плотности сухого грунта к максимальной плотности сухого грунта, полученной в приборе стандартного уплотнения по ГОСТ 22733.

Определение степени уплотнения грунта, песка или щебня проводится в рамках контроля выполнения земляных работ и проверки соответствия показателей уплотнения проектным значениям.

Измерения проводятся в основании котлованов и траншей, в том числе при их обратной засыпке, а также при строительстве автомобильных и железных дорог.

В процессе работ определяется коэффициент уплотнения, который показывает степень соответствия фактической плотности максимальной плотности, до которой можно уплотнить грунт (метод стандартного уплотнения по ГОСТ 22733-2016).

Пример определения степени уплотнения грунта

Допустим, максимальная плотность скелета грунта 1,95 г/см3 (т/м3), а плотность скелета грунта после уплотнения на объекте 1,88 г/см3 (т/м3). Разделим фактическую плотность на максимальную и найдем коэффициент уплотнения: Купл= 1,88/1,95=0,96.

В проектах часто нормируется не степень уплотнения грунта (указан не коэффициент уплотнения), а плотность скелета грунта (г/см3 или т/м3). В этом случае необходимо определить фактическую плотность и влажность грунта на объекте и вычислить требуемую плотность скелета грунта.

Значения коэффициента уплотнения грунта или песчаного основания «примеряют» к нормируемым проектом, ГОСТ или СНиП значениям‚ чаще всего равным 0‚95 (низ земляного полотна) или 0‚98–1‚0 (верх земляного полотна и подстилающий слой).

Экспресс методы определения коэффициента уплотнения грунта, песка, щебня

Распространены 3 экспресс метода определения коэффициента уплотнения грунта: с использованием плотномеров-пенетрометров статического, динамического типа, а также баллонных плотномеров. При определении уплотнения грунтов экспресс методами все измерения проводятся на стройплощадке, по результатам которых оформляется заключение.

В нашей строительной лаборатории используются все три экспресс метода определения степени уплотнения грунтов, песка и щебня.

Статические плотномеры используются для оперативного контроля степени уплотнения песка или грунтового основания при строительстве.

Применяются для определения степени уплотнения песчаных и глинистых грунтов с содержанием включений размером крупнее 10 мм не более 15%.

Приборы обеспечивают достоверные измерения в диапазоне 0,9 — 1,0 от максимальной стандартной плотности, определяемой по ГОСТ 22733 «Грунты. Метод лабораторного определения максимальной плотности».

При использовании данных приборов, степень уплотнения грунтов оценивают по показателю удельного сопротивления пенетрации, рассчитанному по величине прилагаемого усилия при заглублении рабочего наконечника. В зависимости от установленного вида грунтов при сборке плотномера используется конус (несвязные грунты) или усеченный конус (суглинок).

Степень уплотнения определяется отклонением стрелки индикатора, возникающим при деформации динамометрического кольца. Фактическое значение степени уплотнения определяется исходя из полученных результатов замеров по прилагаемой к прибору таблице с учетом типа грунта.

При использовании статических плотномеров для контроля плотности не менее 10% проб необходимо выполнять стандартным весовым методом – кольцами согласно «Руководству по сооружению земляного полотна автомобильных дорог».В процессе контроля качества уплотнения основания для испытаний выбираются площадки размером не менее 20*20 см.

Верхний переуплотненный или разрыхленный слой на глубину 3-5 см снимается, а основание зачищается и выравнивается.

Плотномер ставят вертикально к измеряемой поверхности и нажимом на рукояти погружают наконечник в грунт до упора основания ограничительной муфты в поверхности грунта, после чего плотномер извлекается из грунта, а показание по шкале силоизмерителя записывается в журнал.Пенетрация статическим плотномером в каждой точке выполняется по 3-5 раз.

Расстояние между точками измерения составляет не менее 15 см.Фактический коэффициент уплотнения песка определяется по значениям показаний силоизмерителя плотномера и соответствующим тарировочным графикам, приведенным в паспорте статического плотномера.

Статические плотномеры применяются для оперативного контроля качества уплотнения грунтовых искусственных оснований (слой песка разной крупности) различных сооружений (основания полов, фундаментов, слои дорожных одежд и т.д.) при строительстве объектов.

Также активно применяется динамический плотномер Д-51А. Он, как и статический, используется для оперативного контроля степени уплотнения грунтов с содержанием частиц не крупнее 2 мм. Метод динамического зондирования основан на определении сопротивления грунта погружению зонда (штанги с коническим наконечником) под действием ударов груза постоянной массы, свободно падающего с заданной высоты.

Читайте также  Удельные тепловые характеристики зданий таблица СНИП

Определение степени уплотнения щебня

Прибор БПД-КМ является плотномером водобаллонного типа, измеряющим объем лунки с последующим определением фактической плотности после взвешивания материала, взятого из лунки.

Предназначен для контроля качества уплотнения щебеночных и гравийных оснований и покрытий из смесей, зерновой состав которых отвечает требованиям ГОСТ 25607-94.

Определение плотности сложения грунта осуществляется по общепринятым методикам в соответствии с ГОСТ 28514-90 «Определение плотности грунтов методом замещения объема». Плотность сложения испытываемого слоя определяется с точностью до 0,01 г/см3.

Стандартное уплотнение, как метод контроля степени уплотнения грунтов

В случае применения стандартного способа с обязательным отбором проб грунтов с уплотняемого слоя, отобранные пробы анализируются в лабораторных условиях, т.е. делается стандартное уплотнение, проводится определение максимальной плотности при оптимальной влажности по ГОСТ 22733-2016. Исходя из полученных данных, вычисляется коэффициент уплотнения.

Данный метод более точный, но длительный по времени, поэтому он используется как заверочный в случае применения экспресс методов. Если при использовании экспресс методов на все работы уходит 1-2 дня, то на лабораторные испытания и определения уплотнения грунтов методом стандартного уплотнения — до 3-5 дней.

Результаты, полученные в результате, позволяют дать рекомендации для повышения плотности при низкой степени уплотнении.

Уплотнение грунта СНиП 3.02.01-87

Строительству любых зданий или сооружений предшествует огромная работа по проектированию и подготовке застраиваемой площади к осуществлению планируемых мероприятий. Это относится ко всем объектам, которые планируется использовать длительный период, исчисляемый десятками и сотнями лет.

Во время подготовки проводятся всевозможные пробы и тесты, показывающие пригодность площадей к дальнейшим действиям, например, берутся пробы грунта, вычисляется уровень подземных вод и прочие факторы.

Если плотность грунта в зависимости от его типа не соответствует плановым показателям, проводится ряд мероприятий, направленных на уплотнение грунта.

Проведение подобных мероприятий способствует улучшению технических показателей, и как следствие решает ряд проблем, которые могут возникнуть в будущем, к примеру, проседание грунта со всеми вытекающими последствиями. Первым внешним проявлением проседания грунта могут стать трещины на стенах, а при наложении иных факторов к разрушению объекта.

Методы уплотнения грунта

Качественный состав грунтов отличается в зависимости от географического расположения. При этом каждый из них имеет свою плотность, влажность и способность к проседанию. Поэтому для каждого вида почв разрабатывается комплекс мер, направленный на улучшение их характеристик, формирующий целую методологию.

Способность грунта к уплотнению определяется коэффициентом уплотнения, который вычисляется в лабораторных условиях соответствующими органами. И в зависимости от полученных показателей выбирается оптимальный метод уплотнения. При этом впоследствии рассчитывается усилие, прикладываемое для получения требуемого результата.

Условно методы разделяют на группы в зависимости от способа достижения цели – выведения воздуха из слоя почвы на заданной глубине. Так, различают поверхностные и глубинные способы. А категории оборудования и способы его применения выделяют статические, вибрационные, ударные и комбинированные методы, сочетающие в себе несколько видов влияния (давления). При этом тип оборудования отображает способ применения силы, к примеру, пневматические катки.

Часть таких методов может применяться для малого частного строительства, другие же используются исключительно при возведении масштабных объектов при согласовании с местными властями, поскольку некоторые из них могут повлиять не только на заданную площадь, но и окружающие объекты и привести к их полному или частичному разрушению.

СНиП коэффициента уплотнения грунта

Все подобные операции четко регламентированы на законодательном уровне и поэтому их проведение ведется под контролем соответствующих организаций. Для того чтобы избежать возможных ошибок регламент и методология фиксируются в соответствующих документах – нормах (СНиП).

Уплотнение грунта и соответствующие показатели в российском законодательстве отражены в документах СП 45.13330.2012 и СНиП 3.02.01-87.

Дата принятия этих документов отражена в их названии, соответственно первый принят в 2012 году, а второй в 1987, что означает его моральную изношенность. Однако действия, описанные в документах, актуализированы в 2013.

Они описывают уплотнение грунтов разных видов и грунтовых подушек, укладываемых под фундамент сооружений различной конфигурации, в том числе подземной.

Каток для уплотнения грунта

Для поверхностного уплотнения грунта применяются различного рода катки. В зависимости от характера работ и размеров строительного объекта они могут быть ручными и самоходными. Ручные обычно используются там, где сильное уплотнение почвы не требуется, например, при создании песчаной подушки для мощеных пешеходных дорожек. В данном конкретном случае сильных нагрузок вроде многотонной конструкции не будет, поэтому можно обойтись таким вариантом.

Самоходные и управляемые катки применяются на застраиваемых площадях круглой формы. Однако такой способ обработки не всегда приемлем, поэтому применяются катки, которые движутся не по спирали или кругу, а исключительно взад-вперед.

Катки для уплотнения грунта различаются по весу, одни из них по весу едва достигают в половину тонны, другие, напротив, имеют вес в десятки тонн.

Уплотнение грунта трамбовками

Кроме катков, на небольших участках с песчаными и глинистыми почвами применяют трамбовки. Они представляют собой плиты, подсоединяемые к кранам или экскаваторам, которые сбрасывают их с фиксированной высоты.

Результат – более быстрая утрамбовка на большей глубине от полуметра до метра. Однако подобная технология быстро изнашивает технику.

Несмотря на счастливые случайности, уплотнение грунта чрезвычайно травмоопасная операция, поэтому выполнять ее должны профессионалы.

Источник: http://nagdak.ru/stroy/335-uplotnenie-grunta-snip-3-02-01-87

Количество проходов и рациональный режим работы грунтоуплотняющих машин

Количество проходов и рациональный режим работы грунтоуплотняющих машин

При проектировании земляных сооружений в виде насыпей каждый отсыпаемый слой грунта уплотняется до заданного максимального значения. Максимальная плотность грунта соответствует определенному значению его влажности, которое называют оптимальной влажностью.

Зная значения плотности грунта (p) и его влажности (W), плотность сухого грунта Pd находят из выражения Pd = p/(1+w) и для каждого значения влажности строят график. Затем из графика находят значение максимальной плотности сухого грунта и значение оптимальной влажности.

Если естественная влажность ниже оптимальной, то грунт искусственно замачивается до оптимального значения влажности или высушивается в противном случае.

Определение оптимальной плотности – влажности выполняют в лаборатории, уплотняя образцы грунта в приборе стандартного уплотнения заданным количеством ударов падающего груза массой 2,5 кг.

СНиП 3.02.

01-87 В проекте должны быть указаны типы и физико-механические характеристики грунтов, предназначенных для возведения насыпей и устройства обратных засыпок, и специальные требования к ним, требуемая степень уплотнения (плотность сухого грунта или коэффициент уплотнения), границы частей насыпи, возводимых из грунтов с разными физико-механическими характеристиками. По согласованию с заказчиком и проектной организацией грунты насыпей и обратных засыпок при необходимости могут быть заменены.

При использовании в одной насыпи грунтов разных типов необходимо выполнять следующие требования:

  • использовать в одном слое грунты разных типов не допускается, если это не предусмотрено проектом;
  • поверхность слоев из менее дренирующих грунтов, располагаемых под слоями из более дренирующих, должна иметь уклон в пределах 0,04-0,1 от оси насыпи к краям.

Опытное уплотнение грунтов насыпей и обратных засыпок следует производить при наличии указаний в проекте, а при отсутствии специальных указаний — при объеме поверхностного уплотнения на объекте 10 тыс. м3 и более.
В результате опытного уплотнения должны быть установлены:

а) толщина отсыпаемых слоев, число проходов уплотняющих машин по одному следу, продолжительность воздействия вибрационных и других рабочих органов на грунт, число ударов и высота сбрасывания трамбовок и другие технологические параметры, обеспечивающие проектную плотность грунта;

Читайте также  Гидравлическое испытание трубопроводов систем отопления СНИП

б) величины косвенных показателей качества уплотнения, подлежащих операционному контролю («отказа» для уплотнения трамбованием, числа ударов динамического плотномера и др.).

Если опытное уплотнение предусмотрено проводить в пределах возводимой насыпи, места выполнения работ должны быть указаны в проекте. При уплотнении насыпей и обратных засыпок грунтовыми сваями, гидровиброуплотнением, пригрузом с вертикальными дренами, а также уплотнении грунтовых подушек опытное уплотнение следует производить в соответствии с указаниями обязательного приложения 4.

Обратную засыпку траншей, на которые не передаются дополнительные нагрузки (кроме собственного веса грунта), можно выполнять без уплотнения грунта, но с отсыпкой по трассе траншеи валика, размеры которого следует определять с учетом последующей естественной осадки грунта. Наличие валика не должно препятствовать использованию территории в соответствии с ее назначением.

Насыпи, возводимые без уплотнения, следует отсыпать с запасом по высоте на осадку по указаниям проекта. При отсутствии в проекте указаний величину запаса следует принимать: при отсыпке из скальных грунтов — 6 %, из нескальных — 9 %.

При использовании грунтов повышенной влажности проектом должны быть предусмотрены зоны насыпей, отсыпаемых из дренирующего материала, обеспечивающего дренирование уложенного грунта повышенной влажности при его консолидации под действием собственного веса и возможность перемещения транспортных средств и механизмов по картам отсыпки.

Термины и определения основных понятий:

  • Оптимальная влажность — значение влажности грунта, соответствующее максимальной плотности сухого грунта (ГОСТ 22733-2002). 
  • Стандартное уплотнение — послойное (в три слоя) уплотнение образца грунта с постоянной работой уплотнения (ГОСТ 22733-2002). 
  • Коэффициент уплотнения грунта — отношение плотности скелета грунта в конструкции к максимальной плотности скелета того же грунта при стандартном уплотнении по ГОСТ 22733-2002.

Вода в грунтах встречается в свободном и связанном состоянии:

  • Свободная вода это гравитационная вода, перемещающаяся за счет собственного веса и возникающего перепада давлений, а также капиллярная вода.
  • Связанная вода подразделяется на прочносвязанную воду (слой из 1–3 молекул, окружающих глинистую частицу и притягивающихся к ней с большой силой) и рыхлосвязанную воду, тонким слоем примыкающую к прочносвязанной воде. Рыхлосвязанная вода почти в тысячу раз слабее притягивается к частице, чем прочносвязанная. Прочносвязанную воду можно отделить от частиц только выпариванием, рыхлосвязанную – выдавливанием, создавая давление до нескольких мегапаскалей, или с помощью центрифуги. Капиллярная вода перемещается с помощью поверхностного натяжения менисков.

Для повышения производительности машин и снижения трудоемкости некоторых работ (уплотнение грунта во время обратной засыпки пазух котлованов, устройство насыпей, трамбование грунта и др.) грунты стремятся доводить до оптимальной влажности, определяемой гранулометрическим составом грунта, требуемой его плотностью, типом применяемых машин и другими факторами.

Природные дисперсные грунты имеют самое широкое распространение на поверхности земной коры, именно с ними практически постоянно связано строительство самых разнообразных объектов.

Грунт дисперсный — грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом; образуется в результате выветривания скальных грунтов с последующей транспортировкой продуктов выветривания водным или эоловым путем и их отложения (ГОСТ 25100-95 (2002))

Грунты с механическими структурными связями выделяют в подкласс несвязных (сыпучих) грунтов, а грунты с физическими и физико-химическими структурными связями — в подкласс связных грунтов:

  • несвязный грунт: Дисперсный грунт, обладающий механическими структурными связями и сыпучестью в сухом состоянии.
  • связный грунт: Дисперсный грунт с физическими и физико-химическими структурными связями.

Связные грунты характеризуются наличием сцепления между отдельными частицами; примером таких грунтов являются глины, суглинки, супеси.

Связные грунты, между частицами которых имеют место значительные силы связей, могут быть уплотнены вибрированием лишь после разрушения этих связей, что при обычном оборудовании практически невозможно

Глинистые, связные грунты состоят из очень мелких частиц размером менее 0 005 мм, скрепленных между собой силами сцепления. В зависимости от количества содержащихся в грунте глинистых частиц глинистые грунты разделяются на супеси, суглинки и глины.

Разработка связных грунтов более трудоемка, чем сыпучих. В земляных сооружениях ( выемки, насыпи) связные грунты более устойчивы, так как углы естественного откоса их больше по сравнению с сыпучими.

В строительной практике — для разных грунтов установлена различная крутизна откосов, которая принимается меньшей по сравнению с углами естественного откоса для устойчивости земляного сооружения.

В связных глинистых грунтах их прочность определяется двумя характеристиками – углом внутреннего трения и силами сцепления.

В несвязных (сыпучих) грунтах сцепление между частицами практически отсутствует. К несвязным грунтам относятся илы, пески (в том числе пылеватые), гравий, галька, булыжник.

В несвязных грунтах, подобных песчаным, гравийным и крупнообломочным, прочность характеризуется одной характеристикой – углом внутреннего трения.

Сейсмические колебания могут вызвать потерю устойчивости водонасыщенных несвязных грунтов и их переход в разжиженное состояние.

Относительно наименее опасными являются скальные, полускальные и крупнообломочные плотные грунты. Более опасны все виды песков ? плотные и средней плотности, маловлажные и влажные, а также глинистые грунты с малыми значениями показателя текучести и величиной коэффициента пористости. Наиболее опасными являются рыхлые пески независимо от их влажности и крупности, а также глинистые грунты с большой пористостью и водонасыщенностью.

Зависимость толщины отсыпаемых слоев грунта от его вида, типа машин и требуемого коэффициента уплотнения при применении пневмокатков массой 25 — 30 т

  Наибольшая толщина слоя в плотном теле, м   Необходимое число проходов
глины, суглинки супеси, пески глины, суглинки супеси, пески
Коэффициент уплотнения грунта
0,90 0,95 0,98 0,90 0,95 0,98 0,90 0,95 0,98 0,90 0,95 0,98
0,5 0,4 0,25 0,6 0,45 0,3 4 — 6 8 — 10 12 — 15 4 — 6 6 — 8 10 — 12

Первый и последний проходы катка на полосе укатки выполняют на малой скорости 2 — 2,5 км/ч, промежуточные проходы — на скорости 5 км/ч. Насыпные несвязные грунты уплотняют при давлении в шинах 2 — 4 кг/см2, а насыпные связные — при 5 — 6 кг/см2. После первых двух-трех проходов давление в шинах желательно увеличить в полтора-два раза

Требуемый коэффициент уплотнения грунта приведен в табл. ниже. При оптимальной влажности грунта для достижения коэффициента уплотнения 0,95 ориентировочно назначают 6 — 8 проходов катка для связных и 4 — 6 — для несвязных грунтов; для достижения коэффициента уплотнения 0,98 — 8 — 12 проходов для связных и 6 — 8 — для несвязных грунтов.

Необходимое количество проходов катка по одному следу уточняется пробной укаткой.

Элементыземляногополотна  Глубинарасположения слояот поверхности

покрытия, м

Наименьший коэффициент уплотнения грунта при типе дорожных одежд
 капитальном облегченном и переходном
 в дорожно-климатических зонах
I II, III IV, V I II, III IV, V
Рабочий слой До 1,5 0,98 — 0,96 1,0 — 0,98 0,98 — 0,95 0,95 — 0,93 0,98 — 0,95 0,95

Для связных грунтов на начальном этапе уплотнения давление в шинах катка не должно превышать 0,2 — 0,3 МПа, на заключительном этапе — 0,6 — 0,8 МПа. При уплотнении песков давление в шинах на всех стадиях уплотнения не должно быть более 0,2 — 0,3 МПа.

Первый и последний проходы по полосе укатки выполняют на малой скорости пневмокатка (2 — 2,5 км/ч), промежуточные проходы — на большей (до 8 — 10 км/ч).

Тип грунта Контрольные значения коэффициентов уплотнения kcom при нагрузке на поверхность уплотненного грунта, МПа (кг/см2) при общей толщине отсыпки, м
0,05 – 0,2 (0,5 – 2) св. 0,2 (2)
до 2 2,01-4 4,01-6 св. 6 до 2 2,01-4 4,01-6 св. 6 до 2 2,01-4 4,01-6 св. 6
Глинистые 0,92 0,93 0,94 0,95 0,94 0,95 0,96 0,97 0,95 0,96 0,97 0,98
Песчаные 0,91 0,92 0,93 0,94 0,93 0,94 0,95 0,96 0,94 0,95 0,96 0,97

Навигация и структура информации на сайте

Источник: http://sevak-world.web-box.ru/stroy-tehnologia/zemlyanye-raboti/kolichestvo-prohodov-gruntouplotnyayuschih-mashin

Понравилась статья? Поделить с друзьями: